GUIDE

Types Of Labs
Available On The
SecureFlag Platform

& Secureflag

SecurefFlag Hands-0On
Training Labs

At SecureFlag, we firmly believe that effective, secure coding training is instrumental in
reducing the number of vulnerabilities introduced by developers.

By equipping developers with the right skills and knowledge, we can significantly
decrease the likelihood of security flaws in the code; well-trained developers identify
and remediate vulnerabilities more quickly, leading to a more efficient and secure
development process.

Furthermore, secure coding training reduces the time spent on security rework. When
developers are well-versed in secure coding practices, they are less likely to make
errors that require time-consuming and costly fixes down the line. This heightened
capacity not only saves time and resources but also results in a more robust and
secure product.

SecureFlag’'s wide range of labs, covering more than 45 technologies, is specifically
designed to cater to the multitude of roles in your tech team. The training suite caters
to Frontend Developers, Backend Developers, APl Developers, Desktop App Developers,
DevOps Engineers, Cloud Engineers, Build/Release Engineers and QA Engineers. Our
comprehensive training approach ensures that every member of your team, regardless
of their role, is equipped with the knowledge and skills to code securely.

This guide will walk you through the different types of training content available on the
SecureFlag platform, showcasing how we leverage hands-on training and gamification
to make learning secure coding practices engaging, sustainable, and measurable.

Virtual Labs for

These labs are specifically designed to provide hands-on training to developers.
Leveraging a real desktop environment, an exclusive on the market, developers work
on various real-world scenarios, allowing them to identify and understand real security
vulnerabilities, albeit within a safe training environment.

This format gives developers insight into how an attacker could exploit these
vulnerabilities and the potential impact of such vulnerabilities.

Developers then learn how to fix these vulnerabilities by modifying the vulnerable code
in a real development environment using the same familiar tools present in their daily
roles.

ecureFlag x
s://www.secureflag.com

@ Vinerable App - Chromi... Tl

Vulnerable App - Chromium

@ Vulnerable App X +

< C ® vulnerableapp.com/user/

(VAo ¥ Www.vulnerableapp.com says
session=3acbd4ed-e352-4789-8824-72ffbd57dfdc

Welcome user.

Virtual Labs for

These labs cater to QA Engineers, teaching them the importance of security testing
alongside functional testing. QA engineers learn how to produce security test cases
that ensure the non-recurrence of previously identified security bugs. By incorporating
these security tests, the reoccurrence of security bugs can be significantly reduced,
enhancing the security of the software product.

x +

% SecureFlag

e (5] & htips://www.secureflag.com

+. Scenario
=

Level: Beginner | Points: 3 @ Postman
File Edit View Help

A Invite

o Testing Login Bypass via NoSQL Injection

The inctionality in this

Vulnerable Environment

Collections * SECURITY /loginjson Examples 0 v

Body @ Pre-req. Tests@ Settings @

1 pm.test('The login must not be susceptible to
NoSQLi', function () {
pm.expect (pm. response. json() .auth) . to.equal
('ko');
- S)

Virtual Labs for

In these labs, Mobile Engineers are exposed to a real development environment
alongside a virtual device, simulating real-world conditions. They learn how to identify
potential security vulnerabilities within mobile applications and develop a hands-on
understanding of the techniques to fix them. This training helps improve the overall
security posture of any mobile applications developers work on.

- 7
¢ Scenario apl_requester.dar - app - Visual Studio Code
Level: Bagir Points: Edit Selection View Go Run Terminal Help
0 Exposed Backend URL Leads to Authorization Bypass
° . 8 malcious. ach Trending Movies
e "
o autherization bypass o Mﬂ\flﬁi T MovIE
2 Leam more about Insecure Functionality Exposed, §
Adventrs Marie Adeentune Misvla
Tlendlnu TV Shows
MD\"IE VI
0]

(.

Labs for

The Cloud labs provide a real cloud account for learners for the duration of the lab.
The AWS labs support both CloudFormation and Terraform, which are commonly used
for cloud infrastructure setup and management.

SecureFlag also offers Azure and Google Cloud Platform (GCP) labs. Cloud security
labs focus on teaching best practices for securing cloud infrastructure. In these labs,
each user is provided with a real cloud account for the duration of the lab. Users can
interact with real services deployed on the cloud, identify vulnerabilities, and remediate
them hands-on.

L) % SecureFlag x +
€« C @ https://www.secureflag.com

"random_id" "id" {
byte_length = 4

Scenario - (e

Level: Beginner | Points: 30 2. variables.tf 38

Incorrect S3 Grants Lead to Web Assets
Compromise

's landing page has
HTM

bucket. A few d.

vy in tea

e odify the asset files
and take complete control of the website.

S Learn more about Broken Authorization.

Save Template

“aws_canonical_user_id" "current" {}
"web_assets"” {

assets_prefix}-${random_id.id.hex}"

= "Bucket for web assets"
Environment = "prod"

"aws_s3_bucket_cors_configuration" "web_assets” {
depends_on = [aws_s3_bucket.web_assets]

bucket = aws_s3_bucket.web_assets.id

21v cors_rule {

allowed_headers
"GET", "POST"]
ttps://shop.vulnerableapp.com”]
= ["ETag"]
max_age_seconds = 3000

"aws_s3_bucket_public_access_block” "public_access”

Virtual Labs for

These labs provide hands-on experience with live Docker, Kubernetes, and Linux server
infrastructure. DevOps Engineers are trained to manage and secure these critical
components of modern IT infrastructure. By having real-time access to the genuine
infrastructure, they are empowered to develop a deep, practicable understanding
of the various security challenges that can arise and the appropriate mitigations to
counter them.

(N
& SecureFlag X +
@ hitps://www.secureflag.com
.5 2 & Weave Scope - Chromium
¢ cenario
Level: Beginner | Points: 30
Weave Scope - Chromium
o Exposed Kubelet Read-Only Port
& Weave Scope x 4+)
A security assessment of the Kubernetes cluster highlighted that
Pl nort with C @ exercise.secureflag:4040/#!/state/{"topologyid”:"pods”, ‘topologyOptions’ ods":{*namespace" w &
° Pl port withil
10 Id be abused by an
and move Q search Proce Pods H & = Blive P
L]
th
+
Hide snapshots
Hide storage '
® e Geaaged -
default & 0 =% ?
- J

Security Labs for

The CI/CD security labs provide a detailed and realistic approach to security hardening
of popular CI/CD pipelines. Through hands-on labs, Build/Release Engineers will
learn how to effectively secure the critical components of the software development
lifecycle.

% SecureFlag 2N 4
& - C @ hitps://www.secureflag.com

@ Project #1 Console [Jen... B T

Scenario

Level: Beginner | Points: 3 Project #1 Console [Jenkins] - Chromium

g Project #1 Console [Jenkir x =+ [~}

Q. Search (CTRL#K) m

Permissive Read Access in Matrix Authorization Leads
to Service Compromise

C © server.secureflag:8080/job/Proje

Dashboard v

Project v Console Output

Status () console Output
T Learn more about Broken Authorization. ¢/> Changes
Started by user adminv
B Console Output Running as SYSTEM
Building in workspace jenkins_home/workspace/Project
@ View as plain text [Project] $ /bin/sh -xe /tmp/jenkins8146699868199338006.sh
> git rev-parse --is-inside-work-tree # timeout=10
@ View Build Information Fetching changes from the remote Git repository
> git config remote.origin.url https://git.internal/pipeline-maven-plugin.git #
timeout=18
Fetching upstream changes from https://git.internal/pipeline-maven-plugin.git
> git --version # timeout=10
> git fetch --tags --progress https:/
+refs/heads/*: refs/remotes/origin/*
> git rev-parse refs/remotes/origin/master”{commit} # timeout=10
> git rev-parse refs/remotes/origin/origin/master”{commit} # timeout=10
Checking out Revision 5d6640d8e4esbac47ab9b73703b7bf126807f409
(refs/remotes/origin/master)
> git config core.sparsecheckout # timeout=10
> git checkout -f 5d6646d8edeBbac47ab9b73703b7bf126807F409
> git branch -a -v --no-abbrev # timeout=10
> git branch -D master # timeout=10
> git checkout -b master 5d6640d8edeB8bac47ab9b73703b7bf1268071409
Commit message: "[JENKINS-49482] update summary.jelly to only display 'Deployed
Artifacts:' when artifacts list is not empty*

fgit.internal/pipeline- plugin.git

Labs for

These labs are built around the concept of reviewing vulnerabilities identified through
static analysis. They teach developers how to identify security vulnerabilities from a
static perspective and differentiate between real vulnerabilities and false positives
generated by static analysis tools. Gaining a deeper understanding of these nuances
leads to more efficient code reviews and improved code security.

o000 4 SecureFlag X 4
< - C & https://www.secureflag.com
> Scenario 1ab-c796c5815 execute(
: : Beginn ints: 20
Level: Beginner | Points: 2C 10 results in 0.01s from 1 repository
° Identify the SQL Injection -] > 2 matches
This application contains a SQL query built from mere string 31 sql_statement = " username username="%s" password_hash="%s'" % (username, password_hash)
° concatenation, which, if left unpatched, introduces a SQL ¢ EHERIERKsqL_statement)
Injection vulnerability.
sql_statement = " username users username=? admin=1"
.execute(sql_statement, ion.get('logged_user'),))
e = Learn more about SQL Injection.
m —
' % username,)):
result.append(",".join(map
= c.execute(" * users username = ?", (username,)):
jsonify({'status': 'fail', 'error': 'User already present'})
c.execute(" users (username, password_hash) (2, 2)", (username, password_hash))
conn. commit ()
c.execute(" users username i= 7',
c.execute("' (t, 7,72, 0,
(user['usern s ord_hash']l, user['first_lastname'l, user['admin’]))
users = []
row c.execute(sql_statement):
users.append ({
> 2 matches
messages = c.execute(sql_statement)
render_template('messageboard.html', messages=messages)
o) sql_statement = ' messages (:user, :message)’
c.execute(sql_statement, values)
conn. commit ()
12:50
Powered by

Labs for

The world’s first-ever hands-on threat modeling training - provided by SecureFlag.
These labs help learners understand how to draw trust boundaries, identify threats,
incorporate security controls into software design, and keep security at the forefront
throughout the Software Development Life Cycle (SDLC). The objective is to instill a
proactive security mindset in developers from the start of the development process.

The Threat Model SDK is also available, enabling teams to build their own threat model
training labs. These custom labs can then train all developers about the Threat Model
of their application. This feature ensures that all developers within the organization
have a clear understanding of the application’s threat landscape, thereby enhancing
the overall security posture of the software.

& SecureFlag x +
@ https://www.secureflag.com

Scenario

Level: Intermediate | Points: 30
° Attacks Against Phy A Control Sy

Your organization is considering installing door controllers to
° prevent visitors from wandering into the headquarters' high- Employee

security areas. Help the physical security team to model some

of the threats against this appliance.

Insert Credentials
=t Learn more about Insecure Design.
o m e
o bispays U
Door Relay
Control Door
Door Controller
Validate Credentials
LDAP Server
o
29:43
- J

10

Labs for

These labs use pseudo-code to teach non-technical personnel about modern
application security fundamentals. This training helps to make informed decisions
around security risk, priorities, and scheduling that align with the technical challenges
of software delivery and business needs.

0o & SecureFlag X +

& > C & httpsy//www.secureflag.com

~ Scenario 1ab-74320d1c “webapp\ . pseudocode
Level: Beginner | Points: 10 Pt o
° Identify the Reflected Cross-Site Scripting Files, Symbols
his ation's home p ects a greeting mess: > pages get_parameter('msg’)
° zation. This actice introc webapp.pseudocode show_page(' home. html* e = message)
login():

< Learn more about Cross-Site Scripting. username = get_parameter('username')
password = get_parameter('password')

= Lopei il top L o tatams) Pt

Togged_in:
session = save_local_session(username)
set_session_cookies_and_redirect(session, '/private')

show_page (‘error.htnl')
private():
logged_in_user - check_session_cookie()

logged_in_user:
private_data = read_private_data(logged_in_user)
show_page('private.html', data = private_data)

show_page(‘error.html')

13:15

1

Labs for

Large language models and Al have become integral parts of various industries,
including technology, healthcare, finance, and more. SecureFlag hands-on security
labs for LLM focus on the significant security challenges introduced by these models
to ensure a more secure future in the rapidly evolving field of artificial intelligence for
developers and organizations.

o0 s & SecureFlag X 4+

&« & & https://www.secureflag.com

<. Scenario
[~

Level: Intermediate | Points: 30
° Disclosing Home Assi 's Instr
You just installed a fancy voice-controlled Al-powered home

° assistant in your living room. Challenge your ability to convince
the Al to reveal some of the system-level instructions.

e = Learn more about Prompt Injection.

12

Supplement Your Learning

with rces

Beyond the hands-on lab environment, the SecurefFlag platform is enriched with a
plethora of additional resources to enhance your team'’s security education.

Vulnerabilities Knowledge Base: SecureFlag offers an expansive knowledge base that
hosts many articles and videos about various vulnerabilities. These resources delve
into the mechanics of different security flaws, providing your team with comprehensive
knowledge of these threats. Understanding vulnerabilities is key to developing effective
mitigation strategies and enhancing the organization’s security posture.

SDLC Best Practices Videos: developing secure software requires more than just
addressing vulnerabilities; it involves integrating security into every stage of the
Software Development Life Cycle (SDLC). To aid your team in this, SecureFlag provides
a series of videos outlining best practices for secure software development. These
videos serve as a guide, helping your team embed security considerations into the
initial stages of development and maintain these practices through to deployment.

Security Awareness Videos: every team member plays a vital role in an organization'’s
cybersecurity. To support all personnel within the organization, SecurefFlag offers
security awareness videos that raise the overall understanding and importance of
security across the entire team. These videos highlight common security risks and
preventative measures, promoting a company-wide security-first culture.

Security Trivia: quiz participants as part of final assessments for Security Awareness,
SDLC Security, and other non-interactive learning paths.

You can also create your own Trivia Assessments to test your participants’ knowledge
of organizational security processes.

13

Just-In-Time Training: contextual security training directly within your Jira, Azure
Boards, GitHub, GitLab issues. When a security vulnerability is identified, SecureFlag
provides a link to the relevant training resource, guiding developers through the
remediation process with practical, hands-on labs. This integration ensures that
developers are equipped with the necessary knowledge to handle identified
vulnerabilities, reducing overall remediation time and cost.

By incorporating these additional resources into your security training program,

SecureFlag ensures that your team has a holistic understanding of cybersecurity, its
importance, and the part they play in securing your organization.

14

Secure

Contact us to get started

www.secureflag.com

